Corpus GrippeCanadaV3

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Infectivity phenotypes of H3N2 influenza A viruses in primary swine respiratory epithelial cells are controlled by sialic acid binding.

Identifieur interne : 000436 ( Main/Exploration ); précédent : 000435; suivant : 000437

Infectivity phenotypes of H3N2 influenza A viruses in primary swine respiratory epithelial cells are controlled by sialic acid binding.

Auteurs : Allen C. Bateman [États-Unis] ; Marc G. Busch ; Alexander I. Karasin ; Christopher W. Olsen

Source :

RBID : pubmed:22353399

Descripteurs français

English descriptors

Abstract

BACKGROUND

In the late 1990s, triple reassortant H3N2 influenza A viruses emerged and spread widely in the US swine population. We have shown previously that an isolate representative of this virus-lineage, A/Swine/Minnesota/593/99 (Sw/MN), exhibits phenotypic differences compared to a wholly human-lineage H3N2 virus isolated during the same time period, A/Swine/Ontario/00130/97 (Sw/ONT). Specifically, Sw/MN was more infectious for pigs and infected a significantly higher proportion of cultured primary swine respiratory epithelial cells (SRECs). In addition, reverse genetics-generated Sw/MN × Sw/ONT reassortant and point mutant viruses demonstrated that the infectivity phenotypes in SRECs were strongly dependent on three amino acids within the hemagglutinin (HA) gene.

OBJECTIVES

To determine the mechanism by which Sw/MN attains higher infectivity than Sw/ONT in SRECs.

METHODS

A/Swine/Minnesota/593/99, Sw/ONT, and mutant (reverse genetics-generated HA reassortant and point mutant) viruses were compared at various HA-mediated stages of infection: initial sialic acid binding, virus entry, and the pH of virus-endosome fusion.

RESULTS/CONCLUSIONS

Sialic acid binding was the sole stage where virus differences directly paralleled infectivity phenotypes in SRECs, indicating that binding is the primary mechanism responsible for differences in the infectivity levels of Sw/MN and Sw/ONT.


DOI: 10.1111/j.1750-2659.2012.00333.x
PubMed: 22353399


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Infectivity phenotypes of H3N2 influenza A viruses in primary swine respiratory epithelial cells are controlled by sialic acid binding.</title>
<author>
<name sortKey="Bateman, Allen C" sort="Bateman, Allen C" uniqKey="Bateman A" first="Allen C" last="Bateman">Allen C. Bateman</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706</wicri:regionArea>
<placeName>
<region type="state">Wisconsin</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Busch, Marc G" sort="Busch, Marc G" uniqKey="Busch M" first="Marc G" last="Busch">Marc G. Busch</name>
</author>
<author>
<name sortKey="Karasin, Alexander I" sort="Karasin, Alexander I" uniqKey="Karasin A" first="Alexander I" last="Karasin">Alexander I. Karasin</name>
</author>
<author>
<name sortKey="Olsen, Christopher W" sort="Olsen, Christopher W" uniqKey="Olsen C" first="Christopher W" last="Olsen">Christopher W. Olsen</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22353399</idno>
<idno type="pmid">22353399</idno>
<idno type="doi">10.1111/j.1750-2659.2012.00333.x</idno>
<idno type="wicri:Area/Main/Corpus">000457</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000457</idno>
<idno type="wicri:Area/Main/Curation">000457</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000457</idno>
<idno type="wicri:Area/Main/Exploration">000457</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Infectivity phenotypes of H3N2 influenza A viruses in primary swine respiratory epithelial cells are controlled by sialic acid binding.</title>
<author>
<name sortKey="Bateman, Allen C" sort="Bateman, Allen C" uniqKey="Bateman A" first="Allen C" last="Bateman">Allen C. Bateman</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706</wicri:regionArea>
<placeName>
<region type="state">Wisconsin</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Busch, Marc G" sort="Busch, Marc G" uniqKey="Busch M" first="Marc G" last="Busch">Marc G. Busch</name>
</author>
<author>
<name sortKey="Karasin, Alexander I" sort="Karasin, Alexander I" uniqKey="Karasin A" first="Alexander I" last="Karasin">Alexander I. Karasin</name>
</author>
<author>
<name sortKey="Olsen, Christopher W" sort="Olsen, Christopher W" uniqKey="Olsen C" first="Christopher W" last="Olsen">Christopher W. Olsen</name>
</author>
</analytic>
<series>
<title level="j">Influenza and other respiratory viruses</title>
<idno type="eISSN">1750-2659</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Cells, Cultured</term>
<term>Epithelial Cells (virology)</term>
<term>Hemagglutinin Glycoproteins, Influenza Virus (genetics)</term>
<term>Hemagglutinin Glycoproteins, Influenza Virus (metabolism)</term>
<term>Influenza A Virus, H3N2 Subtype (isolation & purification)</term>
<term>Influenza A Virus, H3N2 Subtype (pathogenicity)</term>
<term>Influenza A Virus, H3N2 Subtype (physiology)</term>
<term>Minnesota</term>
<term>Mutant Proteins (genetics)</term>
<term>Mutant Proteins (metabolism)</term>
<term>N-Acetylneuraminic Acid (metabolism)</term>
<term>Ontario</term>
<term>Reassortant Viruses</term>
<term>Reverse Genetics</term>
<term>Swine</term>
<term>United States</term>
<term>Virus Attachment</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acide N-acétyl-neuraminique (métabolisme)</term>
<term>Animaux</term>
<term>Attachement viral</term>
<term>Cellules cultivées</term>
<term>Cellules épithéliales (virologie)</term>
<term>Glycoprotéine hémagglutinine du virus influenza (génétique)</term>
<term>Glycoprotéine hémagglutinine du virus influenza (métabolisme)</term>
<term>Génétique inverse</term>
<term>Minnesota</term>
<term>Ontario</term>
<term>Protéines mutantes (génétique)</term>
<term>Protéines mutantes (métabolisme)</term>
<term>Sous-type H3N2 du virus de la grippe A (isolement et purification)</term>
<term>Sous-type H3N2 du virus de la grippe A (pathogénicité)</term>
<term>Sous-type H3N2 du virus de la grippe A (physiologie)</term>
<term>Suidae</term>
<term>Virus recombinants</term>
<term>États-Unis d'Amérique</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Hemagglutinin Glycoproteins, Influenza Virus</term>
<term>Mutant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Hemagglutinin Glycoproteins, Influenza Virus</term>
<term>Mutant Proteins</term>
<term>N-Acetylneuraminic Acid</term>
</keywords>
<keywords scheme="MESH" type="geographic" xml:lang="en">
<term>Minnesota</term>
<term>Ontario</term>
<term>United States</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Glycoprotéine hémagglutinine du virus influenza</term>
<term>Protéines mutantes</term>
</keywords>
<keywords scheme="MESH" qualifier="isolation & purification" xml:lang="en">
<term>Influenza A Virus, H3N2 Subtype</term>
</keywords>
<keywords scheme="MESH" qualifier="isolement et purification" xml:lang="fr">
<term>Sous-type H3N2 du virus de la grippe A</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Acide N-acétyl-neuraminique</term>
<term>Glycoprotéine hémagglutinine du virus influenza</term>
<term>Protéines mutantes</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>Influenza A Virus, H3N2 Subtype</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogénicité" xml:lang="fr">
<term>Sous-type H3N2 du virus de la grippe A</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Sous-type H3N2 du virus de la grippe A</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Influenza A Virus, H3N2 Subtype</term>
</keywords>
<keywords scheme="MESH" qualifier="virologie" xml:lang="fr">
<term>Cellules épithéliales</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Epithelial Cells</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Cells, Cultured</term>
<term>Reassortant Viruses</term>
<term>Reverse Genetics</term>
<term>Swine</term>
<term>Virus Attachment</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Attachement viral</term>
<term>Cellules cultivées</term>
<term>Génétique inverse</term>
<term>Minnesota</term>
<term>Ontario</term>
<term>Suidae</term>
<term>Virus recombinants</term>
<term>États-Unis d'Amérique</term>
</keywords>
<keywords scheme="Wicri" type="geographic" xml:lang="fr">
<term>États-Unis</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>In the late 1990s, triple reassortant H3N2 influenza A viruses emerged and spread widely in the US swine population. We have shown previously that an isolate representative of this virus-lineage, A/Swine/Minnesota/593/99 (Sw/MN), exhibits phenotypic differences compared to a wholly human-lineage H3N2 virus isolated during the same time period, A/Swine/Ontario/00130/97 (Sw/ONT). Specifically, Sw/MN was more infectious for pigs and infected a significantly higher proportion of cultured primary swine respiratory epithelial cells (SRECs). In addition, reverse genetics-generated Sw/MN × Sw/ONT reassortant and point mutant viruses demonstrated that the infectivity phenotypes in SRECs were strongly dependent on three amino acids within the hemagglutinin (HA) gene.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>OBJECTIVES</b>
</p>
<p>To determine the mechanism by which Sw/MN attains higher infectivity than Sw/ONT in SRECs.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>METHODS</b>
</p>
<p>A/Swine/Minnesota/593/99, Sw/ONT, and mutant (reverse genetics-generated HA reassortant and point mutant) viruses were compared at various HA-mediated stages of infection: initial sialic acid binding, virus entry, and the pH of virus-endosome fusion.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS/CONCLUSIONS</b>
</p>
<p>Sialic acid binding was the sole stage where virus differences directly paralleled infectivity phenotypes in SRECs, indicating that binding is the primary mechanism responsible for differences in the infectivity levels of Sw/MN and Sw/ONT.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22353399</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>03</Month>
<Day>06</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1750-2659</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>6</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2012</Year>
<Month>Nov</Month>
</PubDate>
</JournalIssue>
<Title>Influenza and other respiratory viruses</Title>
<ISOAbbreviation>Influenza Other Respir Viruses</ISOAbbreviation>
</Journal>
<ArticleTitle>Infectivity phenotypes of H3N2 influenza A viruses in primary swine respiratory epithelial cells are controlled by sialic acid binding.</ArticleTitle>
<Pagination>
<MedlinePgn>424-33</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/j.1750-2659.2012.00333.x</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">In the late 1990s, triple reassortant H3N2 influenza A viruses emerged and spread widely in the US swine population. We have shown previously that an isolate representative of this virus-lineage, A/Swine/Minnesota/593/99 (Sw/MN), exhibits phenotypic differences compared to a wholly human-lineage H3N2 virus isolated during the same time period, A/Swine/Ontario/00130/97 (Sw/ONT). Specifically, Sw/MN was more infectious for pigs and infected a significantly higher proportion of cultured primary swine respiratory epithelial cells (SRECs). In addition, reverse genetics-generated Sw/MN × Sw/ONT reassortant and point mutant viruses demonstrated that the infectivity phenotypes in SRECs were strongly dependent on three amino acids within the hemagglutinin (HA) gene.</AbstractText>
<AbstractText Label="OBJECTIVES" NlmCategory="OBJECTIVE">To determine the mechanism by which Sw/MN attains higher infectivity than Sw/ONT in SRECs.</AbstractText>
<AbstractText Label="METHODS" NlmCategory="METHODS">A/Swine/Minnesota/593/99, Sw/ONT, and mutant (reverse genetics-generated HA reassortant and point mutant) viruses were compared at various HA-mediated stages of infection: initial sialic acid binding, virus entry, and the pH of virus-endosome fusion.</AbstractText>
<AbstractText Label="RESULTS/CONCLUSIONS" NlmCategory="CONCLUSIONS">Sialic acid binding was the sole stage where virus differences directly paralleled infectivity phenotypes in SRECs, indicating that binding is the primary mechanism responsible for differences in the infectivity levels of Sw/MN and Sw/ONT.</AbstractText>
<CopyrightInformation>© 2012 Blackwell Publishing Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Bateman</LastName>
<ForeName>Allen C</ForeName>
<Initials>AC</Initials>
<AffiliationInfo>
<Affiliation>Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Busch</LastName>
<ForeName>Marc G</ForeName>
<Initials>MG</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Karasin</LastName>
<ForeName>Alexander I</ForeName>
<Initials>AI</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Olsen</LastName>
<ForeName>Christopher W</ForeName>
<Initials>CW</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 AI060646</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 AI060646-05</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01AI060646</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>02</Month>
<Day>21</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Influenza Other Respir Viruses</MedlineTA>
<NlmUniqueID>101304007</NlmUniqueID>
<ISSNLinking>1750-2640</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D019267">Hemagglutinin Glycoproteins, Influenza Virus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D050505">Mutant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>GZP2782OP0</RegistryNumber>
<NameOfSubstance UI="D019158">N-Acetylneuraminic Acid</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002478" MajorTopicYN="N">Cells, Cultured</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004847" MajorTopicYN="N">Epithelial Cells</DescriptorName>
<QualifierName UI="Q000821" MajorTopicYN="Y">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019267" MajorTopicYN="N">Hemagglutinin Glycoproteins, Influenza Virus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053122" MajorTopicYN="N">Influenza A Virus, H3N2 Subtype</DescriptorName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
<QualifierName UI="Q000472" MajorTopicYN="N">pathogenicity</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008910" MajorTopicYN="N" Type="Geographic">Minnesota</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050505" MajorTopicYN="N">Mutant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019158" MajorTopicYN="N">N-Acetylneuraminic Acid</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009864" MajorTopicYN="N" Type="Geographic">Ontario</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016865" MajorTopicYN="N">Reassortant Viruses</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059386" MajorTopicYN="N">Reverse Genetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013552" MajorTopicYN="N">Swine</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014481" MajorTopicYN="N" Type="Geographic">United States</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053585" MajorTopicYN="Y">Virus Attachment</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>2</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>2</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>3</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22353399</ArticleId>
<ArticleId IdType="doi">10.1111/j.1750-2659.2012.00333.x</ArticleId>
<ArticleId IdType="pmc">PMC3360128</ArticleId>
<ArticleId IdType="mid">NIHMS351770</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Clin Microbiol. 2003 May;41(5):1936-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12734230</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Microbiol. 2002 Mar;40(3):1073-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11880444</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2004 Aug 1;325(2):340-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15246273</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1981 Aug 1;197(2):293-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7325957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1983 Jul 7-13;304(5921):76-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6191220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1984 Aug;51(2):497-504</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6431119</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1986 Oct;158(1):158-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2879483</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1989 Nov;173(1):317-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2815586</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1994 Nov 1;204(2):491-505</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7941316</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1997 Jan 20;227(2):493-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9018149</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1997 Mar 10;404(2-3):192-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9119062</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1997 Jun 9;232(2):345-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9191848</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1997 Jun 23;233(1):224-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9201232</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1998 Feb 1;241(1):101-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9454721</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1998 Sep;72(9):7367-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9696833</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1999 Jun;73(6):4567-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10233915</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1999 Oct;73(10):8851-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10482643</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Vet Med Sci. 1999 Aug;61(8):955-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10487239</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 1958 Sep-Oct;103(2):178-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13588070</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Dec 7;101(49):17033-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15563589</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Vet Res. 2005 Jan;66(1):119-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15691046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Oct 7;310(5745):77-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16210530</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2005 Dec;114(1-2):15-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15996787</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Microbiol. 2006 Feb;44(2):297-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16455873</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2006 May;80(10):5092-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16641303</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virol J. 2007;4:42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17490484</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Oct;81(20):11170-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17670834</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Dec 26;104(52):20949-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18093945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2008 Jan;26(1):107-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18176555</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2008 Feb;82(3):1128-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18032516</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Feb 26;105(8):2800-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18287068</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2008;436:47-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18370040</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2008 May;133(2):269-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18329747</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Vet Diagn Invest. 2008 Jul;20(4):426-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18599846</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virol J. 2009;6:22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19216793</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Jun 25;459(7250):1122-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19516283</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Jul 10;325(5937):197-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19465683</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Influenza Other Respir Viruses. 2009 Nov;3(6):287-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19903211</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2009 Nov 25;394(2):218-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19766280</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Vet Res. 2010;6:4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20105300</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 Oct 29;285(44):34016-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20724471</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2011 Apr 10;412(2):401-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21333316</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Genes. 2009 Oct;39(2):176-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19597980</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2011 May 10;413(2):169-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21353280</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virol J. 2011;8:434</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21902821</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Glycobiology. 2000 Jan;10(1):11-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10570219</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2000 Jun;68(1):71-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10930664</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2000 Sep;74(18):8243-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10954521</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2000 Sep;74(18):8502-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10954551</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 2000;69:531-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10966468</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2002 Mar;83(Pt 3):601-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11842255</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2004 Jul;103(1-2):91-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15163495</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Wisconsin</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Busch, Marc G" sort="Busch, Marc G" uniqKey="Busch M" first="Marc G" last="Busch">Marc G. Busch</name>
<name sortKey="Karasin, Alexander I" sort="Karasin, Alexander I" uniqKey="Karasin A" first="Alexander I" last="Karasin">Alexander I. Karasin</name>
<name sortKey="Olsen, Christopher W" sort="Olsen, Christopher W" uniqKey="Olsen C" first="Christopher W" last="Olsen">Christopher W. Olsen</name>
</noCountry>
<country name="États-Unis">
<region name="Wisconsin">
<name sortKey="Bateman, Allen C" sort="Bateman, Allen C" uniqKey="Bateman A" first="Allen C" last="Bateman">Allen C. Bateman</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/GrippeCanadaV3/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000436 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000436 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    GrippeCanadaV3
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:22353399
   |texte=   Infectivity phenotypes of H3N2 influenza A viruses in primary swine respiratory epithelial cells are controlled by sialic acid binding.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:22353399" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GrippeCanadaV3 

Wicri

This area was generated with Dilib version V0.6.35.
Data generation: Tue Jul 7 13:36:58 2020. Site generation: Sat Sep 26 07:06:42 2020